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Abstract: The impact of the projectile-plate is a complex phenomenon that is analyzed 

through analytical methods, based on simplifying hypotheses. In addition to the use of empirical 

laws, these aspects of the projectile-plate interaction and the effects on the structure are studied 

using numerical methods. This article presents the numerical evaluation of the behavior of a 

monolithic plate on impact with a rigid projectile using element-free Galerkin method and is 

shown the evolution of the impact with its effects (deformation with perforation of the plate). Also, 

an analyze of the variation of the total energy of the plate, kinetic energy of the bullet and bullet 

velocity over time are presented. 
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1. INTRODUCTION 

 

The impact of the projectile-plate is a complex phenomenon that is analyzed through 

analytical methods, based on simplifying hypotheses. In addition to the use of empirical 

laws, these aspects of the projectile-plate interaction and the effects on the structure are 

studied using numerical methods. 

Significant research has been conducted on the behavior of composite materials on 

impact. However, research on ballistic impact is still in an incipient phase. 

“The Element-Free Galerkin (EFG) method is a very promising method for the 

treatment of partial differential equations. Because of the absence of element 

connectivity, nodal points can be added easily to the part of the domain where the 

solution is (expected to be) steep. This makes the EFG-method more flexible than the 

Finite Element (FE) method. The method looks very promising for computations in 

fracture mechanics, since nodal points can be arranged around crack tips in order to 

obtain accurate stress intensity factors” [1]. 

The element-free Galerkin Method is based on a series of equations of the theory of 

elasticity, used under special conditions of numerical approximation, by the method 

Mooving Least Squares or MLS [2]. 

A mesh free method establishes system algebraic equations for the entire problem area 

without using a preset mesh for domain discretization.[3] 
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2. FUNDAMENTALS OF THE EFG METHOD 

 

The moving least-squares approximation of a function representing a field variable is 

used in the Element-free Galerkin technique [3]. The approximated value of      will be 

denoted by       represented by the expression: 
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In a matrix form, relation (1) is written: 
T( ) H (x)b(x)hu x                                                                                                            (2) 

where n  is the order of the completeness in this approximation, the monomial )(xHi  are 

basis functions and )(xbi  are the coefficients of the approximation function.  

 

 

FIG. 1 Nodal parameters iu  and approximate function )( i
h xu  

 

As seen in Fig. 1, there is a difference between the nodal parameter and its 

approximated value for a node i  in the moving least-squares approximation. The 

coefficients )(xbi  for a point x depend on the sampling points xI which are selected by a 

weighting function aw (x-xI). A weighting function is defined on a compact support 

defined by a sub-domain. Each sub-domain I is associated with a node I . Often a such 

sub-domain is a circle or a ball (3D space), like in the Fig. 2. 

The moving least-squares technique is based on minimizing the weighted L2-Norm      

( J ) defined by the relation (3) or (4); NP  is the number of nodes (points) within the 

support domain where aw (x-xI) 0 .  

 
FIG. 2 A mesh-free discretization 
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In the relations (3) and (4) the following notations have been used: 

 

u
T
 = ( NPuuu ,...,, 21 )                                                                                                     (5) 

H = 

 

  

















T
NP

T
1

)H(x

...

)H(x

                                                                                                       (6) 

   )(xH),...,(xH)H(x ini1
T

i                                                                                              (7) 

 )x(xw),...,x(xwdiagW NPa1aa                                                                                     (8) 

 

The coefficients b result from equation: 

0B(x)u(x)b(x)M
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where, 
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resulting:  

(x)B(x)uMb(x)
1[n]                                                                                           (12) 

Using the solution of the equations (1), (10), (11) and (12) the EFG approximation is 

obtained: 
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)(xI  are shape functions having the expressions: 

(x)B(x)(x)MH(x)Ψ
1[n]T

I



                                                                                                 (14) 

 

The weight function can theoretically be chosen at random as long as certain 

conditions are met. The most important synthetic conditions are: to be greater than zero 

within the support domain; to be zero outside the support domain; to be monotonically 

decreasing from the point of interest; and sufficient smoothness, particularly on the 

boundary. The most used weight functions are: the cubic and the quartic spline functions. 

 

3. MATERIALS AND METHODS 

 

The purpose of this paper is to evaluate the performance of an aluminum plate on 

impact with a 7.62 mm rigid projectile using element-free Galerkin method. A normal 

impact was considered, with an impact velocity of 500 m/s and the analyses time of 9*10
-

5
 seconds.  

Numerical simulations were carried out using the LS-DYNA software [4]. 
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For the theoretical study, the aluminum homogeneous and isotropic plate, presented in 

Fig.3, has the following characteristics: 

 Density: ρ = 2710 [kg/m
3
] 

 Young's modulus: E = 0.690*10
11

  [Pa] 

 Poisson's ratio: υ = 0.33 

 Yield stress: σc = 315e6 [Pa] 

 Dimensions: 0.1 m x 0.1 m x 0.005 m 

 Volume = 2.588e-5 [m
3
] 

 Node number = 61206 

 Element number (SOLID164) = 50000 

 Average element finit dimension = 0.001 [m] 

The material model used for the plate was plastic kinematic hardening and a rigid 

material was considered for the bullet. 

The plate was simulated by element-free Galerkin method and the nodes belonging to 

the four sides have all degrees of freedom blocked (DOF=0).  

 
FIG. 3 Element-free Galerkin model 

 

The interest was focused on the plate, that's why it was considered a rigid material for 

the bullet. The using of these assumptions covers the calculation results and save 

computer time. 

The characteristics of the bullet, presented in Fig. 4, are the following: 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 4 Model of the bullet 
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 Caliber = 7.62 [mm] 

 Density: ρ = 7850 [kg/m
3
] 

 Impact velocity = 500 [m/s] 

 Volume = 6,8587e-7 [m
3
] 

 Mass = 0.00538 [kg]  

 Node number = 6046 

 Element number(SOLID168) = 3860  

 Average element finit dimension = 0.001 [m] 

  

4. NUMERICAL SIMULATION 

 
In the Fig. 5 it is shown the evolution of the impact, with its effects (deformation with 

perforation of the plate), by presenting the deformed state during the analysis of 60 

microseconds 

    
 

   
 
 

FIG. 5 Time evolution of the impact 

 

The time evolution of the plate total energy is presented in Fig. 6. It is observed that 

the total energy absorbed by the plate during the impact is reaching a maximum value of 

10.5 Nm. 

 

a)  t = 10 μs                                  b)  t = 20 μs 
 

c)  t = 30 μs                                  d)  t = 60 μs 
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FIG. 6 Time evolution of the plate total energy 

 

From the graphical representation of the bullet kinetic energy variation, presented in 

Fig. 7, results a variation between the limits of 594-673 Nm, meaning that there is a 

falling of the kinetic energy of the bullet by 11% and represents the remaining ability of 

the bullet to pierce or penetrate a plate similar in material and thickness. 

 

 
 

FIG. 7 Time evolution of the bullet total energy 

 
Analyzing the allure of the curve in Fig. 8, can be observe a constant level at the 

beginning of the diagram that represents the period elapsed to cover the initial bullet-plate 

distance, then begins the process of penetration and perforation of the plate, the speed of 

the bullet decreasing from the initial value of 500 m/s to at the minimum value of 470 m/s. 
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FIG. 8 Time evolution of the bullet velocity 

 

 

5. RESULTS AND DISCUSSIONS 

 

The results obtained by the element-free Galerkin method were introduced in Table 1, 

in order to be compared with the results obtained in the numerical simulation of the same 

impact, analyzed with the Finite Element method and the Smoothed-particle 

hydrodynamics method. 

It can be seen that the values obtained are close and the errors are relatively small, 

below 10%, which is a very good match of the values obtained, implicitly a proper 

analysis. 

 
Table 1. Comparison between three numerical methods 

 EFG MEF SPH Error EFG/MEF Error SPH/MEF 

Plate total energy [Nm] 10.5 9.89 10.9 6.17% 9.27% 

Bullet total energy - max [Nm] 673 673 673 0.00% 0.00% 

Bullet total energy - min [Nm] 594 604 543 -1.66% -8.59% 

Bullet velocity - min [m/s] 470 474 449 -0.84% -4.47% 

Bullet residual velocity [m/s] 470 476 450 -1.26% -4.26% 

processing time [s] 233 76 20   

 

6. CONCLUSIONS 

 

A numerical investigation of the ballistic performance of aluminum plate on impact 

with 7.62-mm projectile was conducted, using the element-free Galerkin method, for the 

velocity of 500 m/s. A corresponding experimental study would be expensive and 

difficult. 

The results obtained by elements-free Galerkin method were compared with the 

results obtained obtained in the numerical simulation of the same impact, analyzed with 

the Finite Element method and the Smoothed-Particle Hydrodynamics method and the 

errors are slightly lower, below 10%, this representing a very good concordance of the 

values obtained, implicitly an appropriate analysis. 
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